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ABSTRACT 

We study limit laws for sums of products of exponentials of nonnegative, 
iid random variables {~ j  }, namely v'N(n) e B ~=1 Ylj Under a Cram6r z ~ i ~  1 

type condition, E[eSV~] < ~ for some s > 0, a weak law of large num- 

bers, central limit theorem, and convergence to stable laws is established 
for appropriate rates of growth of N(n) and proper normalizations and 

scalings. 

1. In troduct ion  

The present work has several motivations. Our primary interest is to eventually 

gain an understanding of the dynamo problem in random flows. This is related 

to the study of magnetic fields generated by a conducting fluid in stars. For this 

model let v(t, x) be a random, incompressible, velocity field on R 3, n a small 

parameter (the inverse Reynolds number) and A the Laplacian on R 3. Then 
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the magnetic field H is the solution of the multi-component parabolic Anderson 

model, 
O H  
0--T+ < v ,V  > H = a A H +  < H , V  > v, 

H(0, x) = /4o  (x). 

This is just Maxwell's equation. The field H has a multiplicative integral 

expression as an expectation over random paths satisfying 

d~(s)  = x / ~ d w ( s )  - v ( t  - s , ~ ( s ) ) d s ,  0 < s < t, 

and with a matrix potential V = (V/j) = (Ovi/Oxj) given by 

t 

For details, see Molchanov and Ruzmaikin [5]. In a discrete approximation to 

this model one has 

g ( n , x )  = E x  e C ~ - " '  H o ( x n  , 

where Ci j ,  0 ~ j ,  i E Z d are i id  trace zero random matrices and {Xn}n>0 is a 

Markov chain on Z d with transition probabilities 

(1.1) pi j  = a, I i - j l  = l ,  

Pii = 1 - 2dn, 

for some 0 < n < 1/2d .  

A similar expression occurs in the study of phase transitions of random di- 

rected polymers on trees, as in Carpentier and Le Dousal [2] or Derrida and 

Spohn [3]. Here one considers a rooted binary tree with independent random 

energies attached to each branch. Denote by eij the energy on branch j in gen- 

eration i. For a length n path ~ = {(x0, 0), (Xl, 1 ) , . . . ,  (Xn, n)} from the root 

let V(?) = ~ cx~,i be the sum of the energies along the path. The resulting 

partit ion function has the form Z = ~ e -~y(~), which is a multiple of the 

expected value of e - z y ( ~ )  over random walk paths. 

Another motivation is that  of a model of a randomly moving particle on the 

integer lattice Z d which encounters soft traps. The traps are modeled as i id  

random variables {V/j  : i E z d ,  j = 0, 1, 2 , . . .} .  The particle follows a random 

walk on ~d with transition probabilities as at (1.1). 
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Then the probability of survival up to time n of the walk in the environment 

{V/j} is given by 

where 7 is a realization of the Markov chain, 7 = {(x0, 0), (Xl, 1), (x2, 2),.. .}. 

Here ~2 > 0 is some parameter. Let us write (~m, s as the probability 

space for the random media provided by the random variables {V/j}. For each 

Wm E ~m, the random dynamics of the randomly moving particle among this 

field of 'soft' traps is represented by the probability space (~, ~-wm, p~m (dw)). 
If T is the killing time of the particle moving in the field provided by Wm then 

PWm(T > n) = E~V'~e-Z E} ~=~ v~j~. 

Consider now an initial configuration of particles concentrated on a box QL = 
I-L,  L] d, 

1, iEQL,  
7(0, i )= 0, iCQL. 

All particles move independently according to the dynamic described at (1.1). 

Define 

1, 
v(n,i ,k) = O, 

and set 

i) = Z k) 
kEZ d 

if particle starting at (0, i) survives to time n and x(n) = k, 
otherwise, 

and ~ (n )=  E ~(n,i). 
iCQL 

Then ~(n) is the total number of particles, started in QL, and are surviving 

to time n. The quantity EW'"~(n) is the quenched expectation of the num- 

ber of surviving particles. We'd like to understand the limiting behavior of 
1 B(n) EjCQL(n) EW"~( n, J) -A(n)  for various choices of L when these quantities 

tend to infinity as n does. In fact, this question is of interest in all of the models 

mentioned above and there are many others of this sort arising in applications of 

probability theory. This question already leads to interesting results in the case 

a = O, which we call the case of zero diffusivity, in analogy with terminology 

arising in the parabolic Anderson model. In this case 

E~'m~(n,i) = e  -gE}'=~ and EWm~(n)= E e-gEL~ 
iCQL 

This is similar to the situation studied in Ben Arous, Bogachov Molchanov 

[1]. There, the authors considered a sequence of iid random variables {Xi}i>l 
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with subexponential tails. Various limit laws were derived for quantities of 

the form 1 ~N_(1) e nx~ -- A(n) for various rates of growth of N. Briefly 

summarizing, in that  work, a crucial quantity was H(t) = log E[etX~]. Then 

critical growth rates were determined in terms of H,  call them H1 (n) and / /2  (n), 

with Hi(n)  < H2(n). For N(n) growing faster than Hi(n),  a law of large 

numbers was established. For N(n) growing faster than H2(n), a central limit 

theorem was established. For N(n) growing more slowly than H2(n), stable 

limit laws were established. 

This brings us to the topic dealt with here. The work of this paper should be 

viewed as the nonstationary analog of the results in [1]. In fact, taking ~ j  = Xi 

for each j gives the situation studied in that  paper. Now, dropping the minus 

sign and specializing to the case d = 1, we study sums of the form 

N 

i~1 

where {Vii, i, j e {1, 2, 3 , . . .}} are non-negative iid random variables defined on 

some probability space (f/, 5 r, P).  Our goal is to understand how the growth rate 

of N(n) influences the various limit laws that  can arise for SN (n) when it is ap- 

propriately normalized and centered. Let V be a random variable, independent 

of and with the same law as the V/j. Assume the Cram6r condition 

E[e sv] = e •(s) < oo 

for s E (-oo,/31) for some open interval containing the origin. It is useful to 

consider the properties of r for s C (-c~,/31). If we define Qs by 

dQ, s e s V 

dP E[esV] ' 

then 

and 

r  E[V:V] 
E[eSV] - EQ [V], 

E[V2e sv] (E[V:V] 2 
- E[esV] k ] : VarQ (V) > O. 

Define 

(1.2) A(s) : 8r  - r  8 C ( - o o , / 3 1 ) .  
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Note A'(s) = sr so A is increasing on (0,/31). The definition of A arises 

from the Legendre transform of r  which is given by 

(1.3) ~*(y) = sup{~y - r  
A 

A simple computation shows that  given y, if there is an s E ( - c~ , f l l )  with 

y = ~ '(s)  then r = sr - r  = A(s), but we shall not use this fact here. 

From now on fix a fl for which r < co, and define the two critical values, 

A1 = A(/3) =/3~'(f l )  - ~(/3) and As = A(2/3) = 2/3r - r 

Since A(s) is an increasing function of s for s > O, it follows that  A1 < A2. 

Moreover, given any A C (0, A(/~I-)), there is a unique s C (0,/31), such that  

A = A(s). We now state our results. Define 

and 

c~(~) = ~ / 2 ~ " ( ~ ) ~ ,  0 < ~ < Z~ 

Ns(n) = Cs(n)e ~'(s)n, 0 < 8 < ~1. 

We shall write N(n) for the number of summands in the limit laws. When 

it appears as a subscript, as in SN or MN,k, the dependence on n will be 

suppressed. The law of large numbers and central limit theorem hold for SN with 

N(n) > e ~n summands for A above the critical values A1 and As, respectively. 

The normalizations are different at these critical values than in the range A > A1 

for the law of large numbers and in the range A > A2 for the central limit 

theorem. The normalizations at the critical parameters use 

(1.4) fi~l (n) = E[e ~Ey~=I v,~ 1{�88 Ej=I v~j_<~,(~)}] 

and 

(1.5) ~i2(n) = E[e 2~ Z:: ,  ~J 1{1 Z~':, ~j<r162 

THEOREM 1.1: IrA > A1 and liminf,~_~cr N(n)e -~n > O, then 

(1.6) 

ForN(n) = N ~ ( n ) ,  

(1.7) 

lim SN(n) P1. 
n--*~ ESN(n) 

lim SN(n) P-1. 
n ~  N(n),41 (n) 
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THEOREM 1.2: /ira > A2 and liminf~_~N(n)e -~n > 0, then 

n - ~ p (  SN(n) z v/Var SN(n) ) v~l / (1.8) lim < x -- e-Y2/2dy. 

If N(n) = N2z(n), then 

lim p(SN(n)--E[SN(n)] < x) - 1 x (1.9) 

If we consider N(n) = N~(n) = c~(n)e )'(s)n summands with s in the range 

(0, 2~) we can obtain stable limit laws. This requires proper normalization and 

centering. Set 
= ~/~ 

and define the normalizing and centering constants 

Bs(n) = e ~r (1.10) 

and 

(1.11) 

0, 
N~(n) EreZ E]=~ ~J Aa(n) = B~(n). [ l ~ A  ~ z..,j=l ~J--~P'(~)}]' 

;'."~) p.r.o,6 E2:1 ~J], 

O < s < ~ ,  

/~< s <2~. 

iux )ds f(u)=exp{iTc~U+/o (eiUX-1 1 T x  2 

where 

(1.12) 

and 

(1.13) 

t:a (x)  = ~ O, x < O, 
- - x  - a ,  X > O~ k 

{a Tr/2cos(aTr/2) a r 1, 
3'a = 0, a =  1. 

We note that  

Aa(n) = e (x(s)-~r162 ~ < s < 2~. 

Then we have the following stable limit laws. 

THEOREM 1.3: I f  0 < S < 2/~ and N(n) = Ns(n) = Cs(n)e )'(s)n, then the 

limiting distribution of Bs(n)-l SN(n) - Aa(n) exists and has characteristic 
function 
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We now turn to a consideration of order statistics. Define, 

MN,I(n) = max{e ~E}~=~ v~J;i E {1,. . .  ,N(n)}}. 

Then 
n V N l j  MN,I(n) ---- e Ej=, 

for some g l (n )  C {1, . . . ,N(n)} .  Set 

n 
MN,2(n)=max{e Ej=lY, J ; i e  { 1 , . . . , N ( n ) } \ { N I ( n ) } }  

and let N2(n) E {1,. . .  ,N(n)} be such that 

MN,2(n) = e ~ E}'=I vN2J. 

Continuing in this way, we obtain MN,k(n), k C {1, . . . ,  N(n)} satisfying 

MN,I(n) > MN,2(n) >_"" >> MN,N(n). 

lim p (  MN,k(n) 
~ Bs(n) 

for j < k and x ,y  > O, 

Analogs of the classical limit laws of extreme value theory (see Leadbetter and 

Rootzen [4]) hold in the present context. 

THEOREM 1.4: For 0 < s < 2/3 and a = s//~,N(n) = Ns(n) = Cs(n)e ~(s)n, 

{ x-J~ e E F  1 j, , �9 > o, 
- -  < x  = O, x < _ O ;  

( M ~  MN,k(n) y) 
l i m P  ) <_x, B~(n------~ <- 

~i=0 ~ if  x > y, = g~O j!(k-j)! ' 
- -'~ j-1 

~i=o z-~ if  x < y. j! , 

Remark: Specializing to the case k = 1 we have, with N(n) = Ns(n), that 

MN,1 (n) iN ,1  (n) 
Bs(n) eflr n 

has the so-called Gumbel distribution as its limit law. Consequently, 

lim logMN,l(n) Pl .  
n - ~  log Bs(n) 

Now for 0 < s </3, from Theorem 1.3 we have 

lira logSiv(n) P1 
, ~  log B~(n) 
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so 

lim logMN,l(n) P1. 
n-+~ log SN(n) 

Thus, on a logarithmic scale SN and MN,1 a r e  comparable. That  is, SN(n) 
is "dominated" by the largest summand. On the other hand, for values of 

s E (/~, 2fl) the law of large numbers (Theorem 1.1) holds for SN when N(n) = 
Ns(n) = cs(n)e )'(s), giving 

log SN (n) P 1 
J i m o o  = �9 

Since Theorem 1.4 also holds for Ns(n), we have 

lim logMN,l(n)p flr < 1. 
n--+oo logSN(n) sr - r + r 

So for ~ < s < 2~, the maximum term does not account for the main growth of 

SN(n) .  

It 's instructive to fix a value of )~ > 0 and think of ~ as an inverse temperature 

which may vary. At high temperature, i.e. for r small, we'll have A > A(2/~) 

and 'disorder' is sufficient for the central limit theorem to hold. As temperature 

decreases, i.e./~ increases, the central limit theorem ceases to hold once A(2~) > 

A, but the law of large numbers holds so long as ,~(~) > A. For temperatures in 

this last regime, ,~(~) > A, there is less 'disorder' and the maximum term begins 

to dominate in SN. 
The remainder of the paper is devoted to the proofs of these theorems. 

2. Preliminary estimates 

Recall the definition of ,~(s) at (1.2). It plays an important role in controlling 

) --= P > y 
j=l 

by means of error estimates in the central limit theorem applied to the CramGr 

transform of the distribution of V. Recall that  A'(s) = sr and r > 0, 

r  > 0 for s E ( - ~ , f l : ) .  Denote by p the law of V and by pn the common 

law (over i) of In E j n = l  V/j. Given an s E (0,/~:), we define 

esy 
~(dy) = e--~#(dy ). 
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Denote by { V j } j > I  a n  iid sequence of random variables with law/5. Use/~n to 

denote the law of their normalized sum: 

j = l  

Notice that  E[Vj] = ~b'(s) and that  Var(Vj) = r  The value s will not 

appear in the notation for/5 and/sn  as it always should be clear what it will 

be. Our first Lemma is a consequence of a common error bound in the central 

limit theorem. The relevant error bound appears as Theorem 5.22 from Petrov 

[6]. It says that  if EXj  = O, EX~ = a2,ElXj] 3 < ~ with a = EX~ and 

( n ) 
p 1 E X j  Edx Fn(dx) : ~ j=l 

and O(x) is the distribution function for a N(0, 1) random variable and ql(x) = 

1 - 4,(x), then uniformly in x E ~, 

(2.1) 1 - Fn(x) = kg(x) _ 6 a 3 ~ ( l a  _ x~)e_X2/2 + o(n_1/2)" 

This will give 

LEMMA 2.1: Given 0 < s < ill ,  there is a c = c(s) such that for z > O, 

(2.2) 

1 / ~  e _ S ~ V _ v 2 / 2 d v  e~(S)n#n(Z, C~) ------~ (z--r 

C oo 
+ - - ~ / ~ ( z - r  (v3 - 3 v l e - S ~ V - v 2 / 2 d v  

+ o(n-1/2)e-nS(Z-r 

In addition, for a differentiable function f for which the integrals below converge 
and a < b, a, b C [-oo, ~], write 

J = ( a + r  and I n =  a, b . 
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Then, 

fj/(y)e ~(s)~n(@) 

_1 ( 

+ s[V n + 

. f o ( n - ~  - - ' ' o(n-1/2)C-ns(y-r f(y)l J - )e ns(y r (s))f (y)dy. + 
J J  

Proof." Notice tha t  

j = l  

= p 1 (% n (y r  - ~'(s)) > 
V .~ ' r  ~ ]  j = l  

and we can apply (2.1) to the dis tr ibut ion of the quant i ty  

1 
E ( %  - r  

~ j = ]  

By s t ra ightforward computa t ion ,  

eX(~)~#~(z, oe) = e -~s(y-r 

= - e -~s(y-r (~, o~ ~1~ - ns e-nS(Y-r oo)dy t~n  \,Y, ] l z  

_ e-ns(y-r 
- - 'V  ~,,,(s) (y - r  

ns [ ~  e - ~ ( ~ - r  ~ ( ~ ,  
- L 'V r T M -  ~'(4)dy 

r~ x n(y--~bl (8)) 2 

+ ---c e-nS(v-r  - - - ( y  - V ' ( s ) ) 2 ) e - ~ l ~  
v~ r 

c f ~  n n(Y--%bs (8))2 

L - - -  e - ~ d y  +"-~rt8 e-nS(y-r r 

+ ~ e-ns(v-r + ~ ns e-ns(Y-r 
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+ ~ c  f ~ ( ~ _ r  - 3v)e-Sv/nr 

+ o(n-1/2)e-nS(Z-r 

The proof of (2.3) follows by first integrating by parts, applying (2.2) and then 

reversing the integration by parts in the terms not involving 0(n--1/2). I 

COROLLARY 2.2: With 0 < s < 213 and c~ = s/~, we have 

. . . .  f l ogx  ) 
limo ~ lvstn)#n ~- -~-  + ~b'(s),c~ = x -a. 

Proof'. Evaluating eX(S)n#n(Z , oo) at z = (logx)//~n + ~b'(s) and using Lemma 

2.1, we have 

/ log x oo) N s ( n ) p n ~ - ~ -  + r 
i l f f  

C o o  

The first term becomes 

1 F 

But 

(v 3 - 3v)e-SX/~r /2 dv + o(1). 

e - S ~ V - ~ 2 / 2 d v  

= s ~ J  "~ log x 

un(dv) = s ~ e - S ~ V l { ( ~  ~)}(v)dv 

is a measure on R with total mass pn(R) = x -~ which is converging weakly to 

x-~5o(dv) as n --+ ~ .  For the first term, 

s e-sx/nr = e-V2/2un(dv) 
long z. 

and since e -~2/2 is a bounded continuous function, vanishing at infinity, 

lim f e-~/2u~(dv) = x -~. 
n - + ~  J R  
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For the second term, 

and so 

C 
~ c ~ ( n )  f los~ (v3 - 3 v ) e - S ~ V - v 2 / 2 d v  

: V ~c /R(V 3 -- 3v)e_V212vn(dv), 

lim c /R n-~oo ~ (v 3 - 3v)e-V2/2vn(dv) = O. 

Thus, 

log x 

and that completes the proof. I 

Another result we shall use later is 

COROLLARY 2.3: 

n----,oolim e-r 21 and 

Proof: We can apply (2.3) with f (y)  
(0, ~'(2~)).  This yields 

= lim f e-'2/2un(dv) = x -~ 
n--+~ J R  

lim c2z(n)e-r ) = c~. 
n ----~ o o  

= e2~n(Y-r = 2~ and J = 

i F e-+(2Z)nfl2(n) = ~  ~ r  e-V2/2dv 

c; 
+ ~ ~ r  3 - 2v)e-V2/2dv + o(1). 

Both assertions of the Corollary now follow easily. | 

3. Proofs of Theorems 

Proof of Theorem 1.1: For (1.6), we assume l iminfn__~  N(n)e -~n > 0, for 

some )~ > ~1. It is sufficient to show for some ~ > 0, 

(3.1) lim EISN(n) - ESN(n)I 1+5 = O. 
n--+oo (ESN(n))I+ ~ 

First observe that  by Jensen's inequality, since V is not identically constant, 

er = E[e(l+~)~ v] > (E[e~Y]) 1+6 = eO+6)~(~). 
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Thus, by the von Bahr-Esseen inequality (exercise 2.6.20, page 82 in Petrov 

[6]), the numerator  satisfies 

E I S N ( n  ) - ESN(n)[  1+5 <_ 2N(n)E[e~  ~'~ =~ �88 _ enr 

<_ cN(n)(e nr + en(1+5)r 

~_ cN(n)enr 

On the other hand, the denominator satisfies 

( E S N ( n )  ) 1+~ = e(l+5)mP(13) N(n)( l+5) .  

By assumption, there is a c > 0 such that  N(n) >_ ce ~'~ for n large enough. The 

ratio in (3.1) therefore eventually satisfies 

EISN(n) -- ESN(n)I '+a < ce(-aa+r162 n. 
(ESN(n))I+a 

But 

~b((1 + 5)/3) = ~b(/3) + ga'((1 + 05)/3)/35, for some 0 < 0 < 1. 

This implies, as A > /~1, that  

-hA + r + 5)/3) - (1 + 5)r = 5(/3r + 06/~) - r - A) < 0 

provided 5 is chosen sufficiently small. Thus (3.1) holds and (1.6) is proved. We 

now prove (1.7), the law of large numbers at the critical value A1, that  is for 

N(n) = Nz(n). By Theorem 1.3, at A = A1 = A(/3), we have B-~SN(n)- -AI(n)  
has a limiting distribution with N(n) = N~(n). Thus, 

This is the same as 

1 (SN(n) Al(n)) -~ O. 
Ax(n) \Be(n)  

SN(n) s 1. 
A1 (n)Bz (n) 

Since Al(n)Bz(n) = Nz(n)ftl(n), this proves the result in the critical case 

= I 

We now turn to the proof of the central limit theorem. 

Proof of Theorem 1.2: The proof of (1.8) uses the Lyapunov criteria, namely 

x'~N(n) E e ~E~=x V~j - (Ee~V)nl2+5 
(3.2) lim z-,i=l n~o~ (N(n)Vare~N1�88 = 0, for some 5 > 0, 
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implies the central limit theorem. Using the assumption lim i n f = ~  e-~N(n)  
> O, the ratio in the limit in (3.2) is eventually bounded above as follows: 

EN(n) Ele~2"~=1�88 _ (EeZV)n[2+5 = N(n)-5/2e(r n 
(N(n) Var e~}  '--1 ~j )1+6/2 

< ce-~(~-~((2+~)~)+(1+~/2)r 
= ce-n(~A-r162 

= ee-n()~-213r162 

for some t~ E (0, 1). 

Then, provided (f is sufficiently small and A > A2 we have 

A - 2/~r + 05~) + r > 0. 

The limit in (3.2) is thus 0 and (1.8) is proved. For the proof of (1.9), define 

= 

~N2z(n)A2(n) 

It suffices to show the following three conditions hold for every ~- > 0: 

(a) lim N2z(n)P(Y(n) > T) = 0, 
n - - ~  o o  

(b) lim N2z(n)E[Y(n)l{v(~)>~-}] = 0, 
n - - ~ o o  

(c) lim N(n)(E[y2(n)I{y(~)<j}]- (E[Y(n)l{y(n)<~-}]) 2) = 1. 
?$--~ (3o 

For (a), using Lemma 2.1 and writing 

fn  = C2~ (n) e--r 42 (n), 

and 
dn - 1og(Tv~n) and en = ~ n dn, 

Zn 
we obta in  

N2/~(n)P(Y(n) _> T) =C2Z(n)e~(2~)n#n(l~ + log(N2z(n)A2(n))2/3n , c~] 

+ 

// + ~nn ~ ( v3 - 3 v ) e - 2 ~ ~ v - v 2 / 2 d v  
n 

+ o(1). 
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Notice t h a t  

"y (dy) = 

is a measure  on R with  to ta l  mass  (Tv/~n) -2 which, by Corol lary  2.3, tends  to  

0 as n > oe. Thus,  the  last  three  t e rms  vanish as n > oc and  (a) holds. For 

the  proof  of (b), we see by (2.3) t h a t  

N2Z (n)E[Y (n)1 {r(~)>~}] 

// _ c2~(n) e~n(Y-C"(2~))eX(2~)n,, rd,,~ 
V~n n t~n \ ~ / 

C nr /3) )  e - ~ ~ v - v 2 / 2 ( v 3  - 2v)dv 

o(I) +-- 
Tf~" 

Noticing t ha t  

Cn(dv) = 2 ~ ~  l(e . , ~ )  ( v ) e - Z ~ V d v  

is a measure  on R with  to ta l  mass  ~n(R)  = 2 ( 7 v ~ )  -1 , and  since lim~____~ fn = 
co, it follows tha t  ~n is converging weakly to the  zero measure .  Thus ,  

lim N2z(n)E[Y(n)I{y(~)>~-}] = O. 
n - - - + o o  

We now tu rn  to the  proof  of (c). Firs t  observe t h a t  

(E[Y(n)l{y(n)<_r}]) 2 

E[Y2(n)I{y(n)<_T}] 

By Jensen ' s  inequality, 

-< E[e2~ E~ ' v~j 1{} E~ v~j<e'(2Z)}] 

A2( ) 
e(2~(~)-r 

e-r ) " 

e2r n < e~P(2~)) n 

which implies, using Corol lary  2.3, t h a t  

lim (E[Y(n)I{y(n)<J}])2 
n--+~ E[y2(n)l{z(n)<_,_}] = 0 .  
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This reduces (c) to showing that  

lira N2~(n)E[Y2(n)l{y(n)<~}] = 1. 
n - - + ~ o  

But, by Lemma 2.1, 

N2Z (n)E[Y 2 (n) l{y(~)_<~}] 

_ c2~(n) fdn+r e2~(Y-r 
fn Jo 

- e-r162 ( n ) x / ~  ~ r  e - ~ / 2 d v  

e f ~  (v 3 - 2v)e-V2/2dv + 

+ o(1). 

~ 12 = In the first term, limn___.~e~ = 0, lim~__+~ ~ ( f l )  oe, and by 

Corollary 2.3, we have lim~__+~ e-r = 1, so 

lim 1 /__~'~ e-V~ /~ dv = 1. 
n--.oo e - r  r 

The remaining terms are easily seen to tend to zero as n > o~. This concludes 

the proof of (c) and therefore Theorem 1.2 is proved. | 

Proof  of  Theorem 1.3: The proof of Theorem 1.3 requires verification (via an 

appropriate modification of Theorem 3.4 from Petrov [6]) of the following three 

items: 

(1) 

(2) 

lim N s ( n ) P ( B s ( n ) - l e ~ E ~  %~ y~j < x) = f .a(x),  x < O, 
n--+oo 

- lim N s ( n ) P ( B s ( n ) - l e ~ E J  ~1 y~j > x) = s  x > O. 
n- -+ o o  

a 2 = lira lim Ns (n) Var (Bs (n)-  1 e z E;=~ �88 1 ~No ~oo {S~(~)_~ ~ ~ v,~ <~)) = O. 

(3) There is a 7 such that  for each 7 > 0, 

lim Ns(n)E(Bs(n) e~ :~ v~j n--*~ l{B~(n)_le~ ~j~l v~j _<~}) - As(n )  

= 7 + 1 + x  2ds  - 1 
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Proof  of  (1): Let 0 < s < 2ft. Obviously, P(Bs(n) - leZF'~  =~ y~ _< x) = 0 for 

x < 0, so there is nothing to prove in this case. For x > 0, by Corollary 2.2, we 

have 

. . . .  ~ l~ x ) 
lim N s ( n ) P ( B s ( n ) - Z e ~ )  ~=~ v~j > x) = lim l v~ tn)pnl - - z - -  + r  co 

X--~ 

so (1) is established. | 

Proof  of  (2): For 0 < s < 2/~, notice that  

~n(dv) = s ~ e ( 2 ~ - s ) ~  v 1, r--c--,,,s, lo~, , (v)dv t - g ~  ~ J , r ~ J  

has total mass 7 : g "  t" + o(1)) and converges weakly to 2~_~r2-%~o(dv) as 

n > ~ .  Writing 
log T 

= r  + #---n-' 

and using Lemma 2.1, 

Ns(n) Var(Bs(n) - l  e ~ ~}'=1 �88 1 l{B~,(n)-le# ~;~=1 vii <r}) 

- < ~ E [  e2~ E2=' Y~ 1{�88 Vii <V. (n)}] 

fv 
.(~) 

=cs(n) e2~n(Y-r 
Jo 

/? = e-V2/2~n(dv) 
o o  

C oo 
+ - ~ / _ o o (  v3 -- 3v)e-V2/2~(dv) 

Jr o(1)e (2~-s)n(y-r t~ ,(n) 

+ o(1)~n fv~(n)  e(2~-s)n(y-r (S) ) dy. 
Jo 

The first term satisfies 

/ ?  e_v2/2~n Ct T2_O~ lim ( dv ) - 2 c~ n---+eo oo 

while the second satisfies 

lim c f ?  n-----+oo ~ co(V 3 -- 3v)e-V2/2~n(dv) = 0 
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and the third satisfies 

lira o(1)e(2#-s)n(u-r + o(1)/3n fo v'(n) e(2#-s)n(u-r  = O. 
n ----+ o o  

Thus  

lim 
f t ~ o 0  

Ns(n)Var(Bs(n)_le#E]=,�88 1 ~ Vij<__T}) = OL T2__O ~ {B~(n)- e 3 = 1  2 - -  a " 

Since lim<~o 2a----g7 2 -a  = 0, this implies (2). | 

Proof of (3): We first observe tha t  ds = a x - l - ~ d x  and compute  the right 

hand  side of (3), which is 

f:x x-lo x I ( a ) - 7 + a  1 +  - a  1 

Thus,  for 0 < a < 1, 

OZ T 1-~ -- OL/ooo X--(~ 
I ( a ) = 7 +  1 - a  l + x  2 

=")' -'l'- T 1 - a  
1 - a 2 cos(aTr/2)" 

For 1 < a < 2 ,  

1~ T 1-c~ "4- O~ f o o  X2--a 
I ( a ) = 7 +  1 - a  l + x  2 

C~ C~Tr 
=7 + Tl-a  

1 -- a 2 cos(art~2)" 

Finally, for a = 1, 

~0 r X ~oo X-- 1 
I(a)  =7 + ~ d x  - 1-~ x2 dX 

- - d x  

- - d x  

1 l o g ( l +  72) - ( ~  log(1 + r2) - logT)  =7+  

= 7  + log v. 

We'll show tha t  for 0 < a < 1, or 1 < a < 2, 

C[7~ 

7 - 2 c o s ( a l r / 2 ) '  

while for a = 1, 

7 = 0 .  

T 1-~ for ol # 1 This will be accomplished by showing tha t  the limit in (3) is 

and is log v when a = 1. 
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CASE (i): 0 < s < ft. 

Then  A,~(n) = 0, B~(n) 
nota t ion  

= e ~r N~(n) = c~(n)e ~(s)n, and recalling the 

log 7 
7/~(n) = ~b'(s) + fl---~-, 

using Lemm a  2.1 we have 

Ns(n) E[e~ Ej%l y~j 1 ,~ ] 
Bs(n) L { ~1 efl Y'~j=l Vij ~T}l 

f~ 
. ( n )  

=Cs(n) efln(Y-r 
a o  

log ~ 

fn~(~) 
+ o(1)fln ]o e(Z-s)n(Y-r 

For the first term,  notice tha t  

x~(dv) = s ~ e ( Z - s ) ~ v l { ( _  ~ r  lo~ )~(v)dv 
V r  ' ~  ~ 

a l - a ( 1  is a measure on R with to ta l  mass 1_---57 ~- + o(1)). Moreover,  xn(dv) is 

converging weakly to  l i t  1-'~5o (dv). Thus,  

lim s ~  ]j~/n~,"(.) e ( Z _ ~ ) ~ v _ v 2 / 2 d v  = a ~_1-c~. 
~----,oo .l_ ~ V ~ , ( s  ) 1 -- a 

The  same observat ion implies tha t  

l i r a  ( v  - = O. 

Finally, it is easy to see tha t  

+ o(1)fln fn~(~)  e(~-s)n(Y-r = O. liIn o(1)e(~-s)n(y-r (s) ) I~ ~ ( n )  

n -----+ o o  Yo 
Thus,  

lim Ns(n) E[JE}L~ V~J l a T 1 - a  
~----~ Bs(n) L { ~ e ~ r ~ l  v~j<~}] = 1 - a 
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and the proof of (3) for 0 < s < fl is complete. 

CASE (ii): s = f l ( a = l ) .  
'~ V~ In this case, Al(n) g~(n)E[ eO~j-lB~3(n) ~i1{71-" - -  - k:j=l ~s<r and we must 

prove 

No(n) .~ or" . v,, 
limoo B - - - ~ t e  . . . .  1 { ~  ,zy=, vO_<r}] -- A l ( r t )  = logr.  

Proceeding in a manner similar to case (i), we use Lemma 2.1 to get 

N z ( ~ )  e ~ E[e Es=~ v~j 1{ A1 (n) 

- No(n) E[e O E~=~ v~' 1{r188 Ey=~ ~s_<n-(n)}] 

r . ~ ( ~ )  

=co(n) 1 ,  e O'~(y-r (O))e~(Z>#.(dy) 
Jr  (O) 

= f l ~  / ~  e-V2/2dv 
dO 

+ c f l ~  f o ' ~  (v3 - 3v)e-V2"ev 

+ o(1). 

Now the first term satisfies 

log T 

lim f l ~  fo ~ e-V2/2dv = logr,  
n ---+ c~ 

lof$ ~- 

while c f l ~ f c f ~ ( v  3 -3v)e-V2/2dv vanishes in the limit as n 

That  finishes the proof of the case s = ft. 

(X:). 

CASE (iii): fl < s < 2ft. 

Here, we must show 

O~ T1 _ ~  lim N~(n)E[e~E]~V~Jl e ,~ v,s<_~} ] A~(n) = 1 - a  
n----+oo g s ( n )  t { ~ e  P'J =1 - " 
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But, by the definition of A~(n) and Lemma 2.1 we have 

N~(n)E[B~(n)-le~ E}'=~ v,~ l{B~(~l_~e~ r2=~ v+, _<~}] - A~(n) 

=Ns(n)E[B~(n)-le~ E~=I �88 l{B+(n)_le/~ Ey'=l vo >r}] 

=s e (~-~) ~ - v 2 / 2 d v  
1o~ r 

e ~  
C c~ 

+ 7 8 ~  / lo+r (v3 -- 3v)eC'+-'+)~v-v:a/2dv 

+ o(1). 

The measure 

7rn(dv) = 8 ~ 1 .  log~- , ~ e ( Z - s ) ~ V d v  

a l - - a ( ]  has total mass l_--~r ~+ + o(1)) and is converging weakly to lav~rl-aSo(dv). 
Thus, 

lim s e ( ~ _ ~ ) ~ _ ~ / 2 d v  - a r l _ ~  

lim - = o 
~--+oo x/n j lo+v 

and thus 

lim 
n ------~ oo 

as desired. 

N,(n) EreZ E}~=I �88 1 a . l _ l _ a ,  B~(n) L {~el~:;~=l v+~<j}] - A,~(n) - 1 - a 

| 

This competes the proof of Theorem 1.3. | 

Proof of Theorem 1.4: We only give the proof for the limiting distribution of 

MN,1/B,(n); the other proofs follow in a similar manner. Recall 

MN,1 = max{e ~E}+=I v+,, i = 1,2, . .. ,N(n)} ,  

B~(n)=e zr 0 < s < 2 / 3 ,  

Ns(n) = cs(n)e ~(s)n, 

and we want to prove that  if N(n) = Ns(n), then 

p(MN,1 ) = ~ e  -x-", x > O ,  
\ B~ (n) -< x [ 0, otherwise. 
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Now, for x > 0, 

P(MN,1 < XBs(n)) = P(e~ZJ "=' v,, < xBs(n))N~(n) 

= P Z Vij < log x g.~ J=~ _ - ~  + r 

log x = ( 1 -  #n(~b'(s) + - ~ - , c ~ > )  N'(n). 

By Corol lary 2.2, if x > 0, 

l ogx  c~) Ns(n)~ (r --~--, 

Therefore ,  for x > 0, 

= x - a ( l + o ( 1 ) ) .  

logx .~N~(n) / 
| 1  - #~(~b'(s)  + - ~ - ,  00)) 
k 

(n) 

Ns(n)#n(r + ~ oo) 
= 1 -  g s ( n )  

= (1 - x - a ( 1  +~ N*(n) 

) e - x - a  , r t  ~ (x3. 

For x <_ 0 there  is nothing to  prove. | 

N~(n) 
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